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Absrract 

We have obtained a large n u m b e r  o f  solutions to the  aesthetic field equations.  We discuss 
19 solut ions which appear to lead to bounded  particle systems.  One of  the  solut ions is 
more  complex  (al though only slightly) than  the  solution discussed in detail in Muraskin 
and Ring (1975). The solutions we have found have varied mathemat ica l  properties. 

1. Introduction 

In our most recent work on aesthetic field theory (Muraskin and Ring, 
1975) we found a solution with considerable structure (see Figures I -4  of 
Muraskin and Ring, 1975). Also, the location of the maximum (minimum) 
center as a function of time does not lie on a straight line. We have seen that 
aesthetic field theory is capable of  describing a simple collision process. 

In our last paper, we pointed out that the solution under discussion was 
not general since the restrictive condition P~k = F~t was satisfied by the 
initial data, and furthermore, this relation is maintained by the field equa- 
tions. This suggested to us that we should search for more solutions to the 
field equations. In particular, we should took for solutions that do not have 
unwanted restrictions such as F~k = P~t. 

In this paper, we discuss the results of an extensive search for new solutions. 
We have employed two different methods. The first involved assigning 
0.1, -0.1, or 0 for the components and then permuting these assignments. 
We also made some selected guesses involving the assignments +0.2 and -+0.3. 
The second approach involves the making of various algebraic substitutions 
for the components. We then look for those that cause the integrability 
equations to collapse into a smaller number of equations that can be easily 
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solved. This is the approach used in Muraskin and Ring (1971). For our 
present work, we utilized the computer making use of REDUCE. 

Most of the results we will describe were obtained from the SLAC 370/168 
and 360/91 computers. 

2. Solutions from Permutations of +- 0.1, 0 
o~ 

We studied those solutions for which P ~  are unchanged under a cyclic 
permutation of the coordinates 1,2, 3. This is one way in which we can treat 
the fourth component differently from the three space coordinates. We thus 
have 

r lo = r~o = r~o 

r h  = r~3 = r ~  

etc, 

Thus, P ~  has the following structure: 

r I , = A  r h = c i  r13 = c 2  rlo = 

F~I=D1 I'~2=E2 F~3=B, P~o=B4 

r l l  = 0 rio2 = 9 3 r13  = B 6 r i o  = g 

r~, = c~ r ~ = A  r~3 = c~ r~o = 

rg, = 8 6 r g  2 = 0 r23 = 8 3  r20  = E 

r ~ , = S 2  F~2=B1 r~3=D,  r~o=B4 

r31 = 9 2 r32  = E1 r33 = DZ" r3o = B7 

r ~  = e3 r ~  = B6 rg3 = 0 r~oo = e 

F°I = ~ r°2 = Bs r°3 = Bs P°o = D 

F°l = B8 F°2 = ~ F°3 = Bs P°o = D 

F°l = Bs F°2 = B8 F°3 = ~ F°o = D 

rS, -- c r ° : - -  c r%-- c r°o--A'  

F/k is gotten from F ~ ,  using 

Pjk- eaie3] e'yk P37 

(2.1) 

(2.2) 
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We chose eC'i to be the following: 

e 1 =0.88 el2 = - 0 . 4 2  ei3 = - 0 . 3 2  e~o =0.22 1 

e21 = 0.5 e22 = 0.7 e23 = -0 .425 e2o = 0.3 

e31 = 0.2 e32 = -0 .55  e33 = 0.89 e3o = 0.6 

eel = 0.44 e°2 = -0 .16  e°3 = 0.39 e°o = 1.01 

(2.3) 

The 64 P ~  are from (2.1), given in terms of 22 parameters. 
We have tested whether the integrability equations are satisfied for the 

following guesses: 
(a) The 22 parameters can take on only the values +0.1 and -0 .1 .  All 

possibilities consistent with this were considered. 
(b) The 22 parameters can take on only the values to +0.1 and 0. All 

possibilities consistent with this were considered. 
(c) The following parameters were fixed in the manner below: 

A'  = 0.1 

0 =0.1 

¢ =o.1 

=-o .1  

B1 = 0.1 

(2.4) 

The remaining parameters were assigned the values to +0.1, -0 .1 ,  and 0 in all 
possible ways. The reason we fixed 0, q~, ~ , A '  to be nonzero is that from 
previous experience we noticed that all our bounded particle solutions 
(Muraskin, 1973; Muraskin, 1974; Muraskin and Ring, 1975) had this 
property. Furthermore, if we set ~ = 0 in Muraskin (1973), we still got a 
solution to the integrabflity equations, but we have not been able to 
establish a trend towards boundedness in our computer studies. 

(d) We made selected trials with the following fixed elements: 

B1 Bz B4 B7 A' 0 ~ 
0.1 -0 .1  -0.1 0.1 -0 .1  0.1 0.1 -0 .1  
0.1 -0 .1  -0 .1  0.1 -0 .1  0.1 -0 .1  0.1 
0.1 -0 .1  -0 .1  0.1 0.I 0.1 -0 .1  -0 .1  
0.1 --0.1 --0.1 0.1 0.1 --0.1 0.1 0.1 
0.1 -0 .1  -0 .1  0.1 0.1 0.1 - 0 . i  0.1 
0.1 -0 .1  - 0 . i  0.1 - 0 . t  0.1 0.1 0.1 

B1, B2, B4, B7 are kept the same in all these instances. The signs ofA' ,  0, 0, 
and ~ are mixed up, so as to get away from the restrictions in (2.4). The 
remaining parameters were then assigned 0.1, -0 .1  and 0 in all possible ways. 
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When tkis was finished, we repeated the procedure for different choices of 
B1, B2, 84, B 7 given below: 

B1 B2 B4 B7 

0.1 -0 .1  0 0 
0.1 -0 .1  0.1 0.1 
0.1 0 0 0 

0 0 0.I 0 
0 0 0.1 -0 .1  
0 0 0 0 

-0.1 0 0 0 
0 0 -0 .1  0 

0.1 -0 .1  0 0.1 
0.1 0 -0 .1  0.1 
0.1 0 0.1 0.1 

0 0 -0.1 0.1 
0.1 -0.1 0.1 -0 .1  

-0 .1  0.1 0.1 -0 .1  

(e) We used the same pattern for B1, B2, B4, B7 as above in (d) but with 

A' 0 ~ 

0.1 0.1 0.2 0.1 
-0 .1  0.1 0.2 0.1 

0.1 -0.1 0.2 0.1 
0.1 0.1 0.2 -0 .1  

-0 .1  -0.1 0.2 0.1 
-0 .1  0.1 0.2 - 0 . I  
-0.1 - 0 . I  0.2 -0.1 

0.1 -0.1 0.2 -0 .1  

This procedure was then repeated 
B's were tried in the +0.2 to +0.3 runs: 

B1 B2 
0.1 0 
0.1 0.1 
0.1 0.1 

for ~ = -0.2,  +0.3, -0.3.  Some additional 

B4 B7 

0.1 0 
0.i - 0 . I  
0.1 0.I 

This tremendous number of guesses has paid off and led to a large number 
of solutions. In Table I, we list many of the bounded particle solutions. We 
have not put all the bounded particle solutions we found into the table, since 
the solutions tend to fall into classes, the members of a class being not signi- 
ficantly different from other members of the same class. As an example of 
members of a class, we have included datum 12 in the table. This datum is 
similar to datum I. The nonzero components of 12 are the same as the non- 
zero components of 1, only certain signs are different. Data 1 and 12 behave 
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similarly in computer  runs. Another  way that  a datum can get to be in the 
same class is i f  i t  has just  about  all the components  the same except for a 
few that  are zero in one case and not  zero in another.1 Thus, some judge- 
ment  was made in order to not  make the table too  cumbersome. 

We see that  there are many different bounded particle solutions to the 
field equations with diverse propert ies for F~7. We shall have more to say 
about  the solutions after we discuss our second approach to finding solutions. 

3. Algebraic Approach  to Finding Solu t ions  

We still make use of  the structure (2.1). We perform the algebraic sub- 
sti tutions 

B 3 = B 6 = 0 B 8 = B 5 = 

B 4 = B 7 = 6  B1 = E 2 = D 1  
(3.5) 

A = G  =c2 6 =0 

B2 = E1 = D2 

The Riikt  = 0 integrabili ty equations then collapse into the following smaller 
set: 

C6 - 2D6 + E ~  = 0 

2 C E -  D E  - ED1 - EC1 - ED2 - A'~) + 362 = 0 
(3.2) 

D 2 - DD1 - DC1 - DD2 - A ' ~  + 3 ~ 6  = 0 

C A ' -  D A '  + 36D - 3 E ~  = 0 

The solution of  these equations is 

C = D  

= (~D/E (3.3) 

A '  = 362 + E(D - C1 - D1 - D 2 )  

6 

We choose as parameters, the following: 

C 1 = - 0 . 2 ,  D = 5/4 

D1 = - 0 . 1 ,  6 = 1 (3.4) 

D 2 = - 0 . 0 5 ,  E = - 5 / 4  

Then, we get C =  5/2, ff = I, A '  = 1. The solution has Y~k 4=- F t t  and leads to 
a bounded particle. 

i Maps for some solutions look similar to other solutions found. This, too, was used to 

shorten the table. 
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An algebraic substitution that does not lead to 0 = ~ is as follows: 

0 = B 3 = B6 ,  D I  = B1 = E2 

= B s = Bs, D 2  = B 2 = E 1 

A = C 1 = C2, B 4  = - B 7  

In this case, the R/]kt = 0 integrability equations again collapse and can be 
solved. We find 

A,=302 +CE-E(C1  +D 1 +D2) 

0 
D = C  

= DOlE 

= 30 

We choose 

527 

(3.s) 

(3.6) 

C1 = 0.09 ~ = 0.6 

D 1 = - 0 . 0 4  D = 0.1 (3.7) 

D 2 = - 0 . 0 5  E = - 0 . 1  

This leads to 0 = 0.2, C=  0.1, ~ = -0 .2 ,A '  = 0.55. This set of data also has 
F~k ~ P~: t and leads to a bounded particle. 

4. Results 

We can draw the following results from our investigations. Note that 
datum 1 was discussed in greater detail in Muraskin and Ring (1975). Datum 
10 appears in Muraskin (1973), datum 15 in Muraskin (1974), and datum 3 
in Muraskin and Ring (1976). 

(a) There are many solutions to the integrability equations. 
(b) There are many different ways to obtain a bounded particle system 

with all sorts of  different properties: R//kl = 0 or not; r~k = P~t or not; 
gogP~8 having (not having)a totally antisymmetric part when ga~ = (1, 1, 1, 1). 
Still others can have (not have) a maximum in g0o at the origin when 
g,~3 = (1, 1, 1, 1). 

(c) However, even though the solutions for the table have diverse 
properties for 1~ v, the characteristics of  the solutions have much in com- 
mon with one another. Our results are inferred from maps around the origin 
and long runs down the -+x axis. (For datum 9, runs were made along the 
-+y axis instead of  _+x). The field goes to zero if one gets far enough down 
the axis. The number of  turnabout points down an axis is an important 
criterion of  how complex a solution is. That is, a many-body system would 
be expected to have a large number of  turnabout points down an axis. In no 
case did we find more than 4 turnabout points down an axis, and 4 was not 
common. 
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Another criterion for complexity is the number of planar maxima and 
minima. Previously, datum 1 was the most complex we had found with 4 
such planar maxima and minima (see Figure 1 of Muraskin and Ring, 1975). 
We have found a solution with greater complexity. Datum 16 has 5 such 
planar mamma and minima. This increase in complexity is not overly 
dramatic. 

We have not had the computer capability to study the trajectories of the 
particles for the many solutions. 

From our work this far, we see it is not so simple a task to increase the 
complexity of solutions. 
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Note  added in p roo f  

See also M. Muraskin (1975). International Journal o f  Theoretical Physics, 
13,303. In this paper equation 3.13 should read 

i~]k = i aeaJ 
ea ~x--- ~ 

and 3.14 should read 

dee, i = _ I~jkee, Jdx k 


